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Abstract 

In general, decision support is one of the main 
purposes of model-based analysis of systems. Response 
surface methodology (RSM) is an optimization 
technique that has been applied frequently in practice, 
but few automated variants are currently available. In 
this paper, we propose the combination of RSM with 
numerical analysis methods to solve continuous time 
Markov chain models of class-based queueing systems 
(CBQ). We consider first- and second-order models in 
RSM to identify an optimal parameter configuration 
for CBQ as part of the differentiated service 
architecture. Among the many known numerical 
solution methods for large Markov chains, we consider 
a Gauss-Seidel solver with relaxation that relies on a 
hierarchical Kronecker representation as implemented 
in the APNN Toolbox. To effectively apply the 
proposed optimization methodology we determine a 
suitable configuration of RSM and compare the results 
with previous results for optimizing CBQ. 

 
1.  Introduction 

 
In model-based design of computer and 

communication systems, optimization techniques can 
help to identify optimal or nearly optimal 
configurations to support decision-making. From a 
conceptual point of view, an optimization procedure 
searches for those parameter settings that maximize or 
minimize a given objective function f. In many model-
based designs f depends on a stochastic model of a 
discrete-event system and different opportunities for its 
evaluation exist. In the case of finite state Markov 
chains, numerical methods are known that give exact 
results with respect to a transient or steady state 
distribution. Furthermore, simulation is an approach 
that is widely applicable due to its relative lack of 

constraints. However, simulation of stochastic discrete 
event systems yields only estimates of the performance 
measures, typically accompanied by confidence 
intervals [12]. 

In this paper, we consider f to be defined on a 
family of continuous time Markov chains (CTMCs). 
Numerical analysis of CTMCs has a number of 
challenges. In particular, the generator matrix Q of a 
CTMC is often large and very sparse. That has 
stimulated a lot of research on data structures that 
represent Q in a space-efficient way and iterative 
solution methods that converge quickly to the resulting 
distribution. In the current situation, the space used for 
the resulting distribution is the bottleneck in terms of 
space if state-of-the-art representations of Q are 
employed, i.e., symbolic structures like multi-terminal 
binary decision diagrams or matrix diagrams and 
structures based on a matrix algebra like modular and 
hierarchical Kronecker representations; see [14], [4] 
for recent overviews. An ample variety of numerical 
methods exist for steady state analysis (see [18] for a 
textbook overview); however, no technique is known 
yet that is clearly superior in general. However, a 
common property of all techniques is that 
computations to obtain exact results are relatively 
costly. That has considerable impact on the selection of 
an optimization procedure to be applied for objective 
functions that require numerical analysis of a CTMC. 

Optimization is a research area with a long 
tradition, particularly in the field of operational 
analysis, which has given rise to a wealth of 
techniques. In particular, genetic algorithms and 
evolutionary strategies have gained a lot of attention 
recently. Despite their impressive performance in 
many areas, the fact that those techniques tend to 
require an evaluation of the objective function at many 
parameter settings has motivated us to focus on a 
different and also well-established method, namely the 
response surface methodology (RSM) [15]. It was 
originally developed for optimization based on real 
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experiments, but can be easily extended for use with 
stochastic models. However, although RSM has been 
known for a long time and a well-established theory 
has been developed, the algorithm is usually described 
in such a way that several steps must be done 
manually, so that the approach cannot be integrated in 
an optimization package in which the whole 
experimentation and optimization approach is done 
automatically. 

Recently, Neddermeijer, Oortmarssen, Piersma, and 
Dekker proposed a framework for response surface 
methodology for optimization of simulation models 
[16]. Their framework shows a possible way to 
combine the various mathematical and statistical 
methods that belong to response surface methodology. 
Nevertheless, their framework is still far from being an 
automated algorithm. Kleijnen and Sargent proposed a 
procedure for linear regression metamodeling in 
random simulation [11]. Their approach distinguishes 
between fitting and validating a single metamodel with 
respect to an underlying simulation model. To the best 
of our knowledge, until now no fully automated 
realization of the response surface methodology that is 
tailored to the optimization of computationally 
expensive numerical models has been available. 

In this paper, we present a novel approach for the 
optimization of numerical models that is based on the 
response surface methodology. Our approach 
iteratively uses first- and second-order linear 
regression metamodels combined with a gradient-
based method to find a direction of improvement. Of 
particular importance is the algorithmic realization of 
RSM such that it can run with very limited information 
or support from a user. Since RSM is able to tolerate 
imprecise evaluation of the objective function to a 
certain extent, we make use of this effect to adaptively 
adjust the precision of an iterative procedure being 
applied to the steady state analysis of a CTMC. 
Furthermore, we observe and make use of the 
phenomenon that values of an objective function that 
result from an iterative solution may converge much 
faster than the iterative solution itself. That gives rise 
to a novel, adaptive, and heuristic approach for RSM 
optimization with numerical solution methods. The 
approach trades computation time for accuracy. As an 
application example, we consider the optimization of a 
class-based queueing system [7], [13]. Class-based 
queueing (CBQ) is a “per hop” packet-scheduling 
mechanism that provides differentiated service to 
traffic flows of different types and is used as part of 
the differentiated service architecture (DiffServ) [9]. 
According to [3], we develop a stochastic Petri net 
model of a CBQ system and apply numerical analysis 
based on a Gauss-Seidel solver with relaxation for a 

hierarchical Kronecker representation of the generator 
matrix. The APNN toolbox is used for modeling and 
analysis [2]. 

The paper is organized as follows. Section 2 
develops the fully automated RSM algorithm. Section 
3 considers the analysis of stochastic models via 
numerical methods and develops three strategies for 
combining RSM with numerical models. In Section 4, 
a stochastic model of a class-based queueing system is 
developed, and the optimization task is defined. 
Section 5 presents experimental results. 

 
2.  Response Surface Methodology 

 
From an abstract mathematical point of view, a 

stochastic model can be represented by a function 
φ(w), which maps a vector of input parameters w = 
(w1,…,wk) onto a set of performance measures of 
interest. Since φ represents the stochastic nature of a 
stochastic model, the output performance measures are 
random variables, and different characteristics of their 
distributions such as mean, variance, further moments, 
or quantiles could be of interest. That relationship is 
expressed by M[φ(w)] = f(w), where f is called the 
response surface function and M is a mapping from the 
random variables onto a real-valued algebraic 
combination of certain characteristics of their 
distributions. The most frequently considered 
characteristic is the expectation of those random 
variables; however, any other measure can be used 
instead, given that the analysis method employed to 
compute φ(w) is able to support it. 

The general optimization problem discussed in this 
section is characterized by finding the input parameters 
that maximize/minimize the response surface function. 
Since φ is only implicitly represented as a stochastic 
model, or in other words as a black box, only those 
optimization methods that do not exploit the structure 
of φ can be applied. To solve that optimization 
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Fig. 1. Illustration of the Response Surface 
Methodology in two dimensions 



(1) Transform natural variables into coded variables 
(2) Choose initial center point cnew := (0,…,0) and half-width of local region ω := 0.2 
(3) WHILE ω > ωstop DO 
(4) cold := cnew 
(5) Transform local region with center point cold into a [-1,1]k hypercube 
(6) Approximate response surface function in the local region with center point cold and at least k design points by a first-order linear 

regression metamodel 
(7) Test the first-order model for goodness-of-fit according to the adjusted coefficient of determination 
(8) IF first-order model is adequate THEN DO 
(9) determine direction of steepest ascent/descent and step size 
(10) REPEAT 
(11) go one step in direction of steepest ascent/descent and determine the response for the new input parameters via a single

evaluation of the stochastic model 
(12) UNTIL new response results in no further improvement 
(13) cnew := input parameters of last improvement of the response 
(14) IF cnew = cold THEN set new half-width ω := ω/2 
(15) ELSE DO 
(16) IF ω < 4·ωstop THEN DO 
(17) Approximate the response surface in the local region with center point cold by a second-order linear regression metamodel 
(18) Test the second-order model for goodness-of-fit according to the adjusted coefficient of determination 
(19) IF second-order model is adequate THEN DO 
(20) Determine stationary point of the second-order model 
(21) Determine type of stationary point according to the signs of the eigenvalues of matrix B 
(22) IF type of stationary point conforms with optimization goal THEN cnew = stationary point 
(23) OD 
(24) OD 
(25) set new half-width ω := ω/2 
(26) OD 
(27) OD 
(28) RETURN optimal solution cnew 

Fig. 2. Pseudo-code of the RSM optimization algorithm 
problem, we use the Response Surface Methodology 
(RSM) [15]. RSM is an optimization method that is 
able to identify a (local) optimum. In contrast to, for 
example, evolutionary algorithms [17] and simulated 
annealing [10], it is a deterministic optimization 
method. In RSM, local marginal effects of the 
stochastic model are estimated by regression 
metamodels to find a direction of improvement. Fig. 1 
shows a possible course of the general RSM procedure 
in a two-dimensional search space. In the local-
exploration phase (see phase I in Fig. 1), RSM uses a 
sequence of first-order regression metamodels, 
combined with a steepest ascent/descent search. In that 
phase, four points in a square are simulated, and a first-
order regression model is approximated to characterize 
the response surface around the current center point. In 
the final optimization phase, RSM uses a second-order 
regression metamodel (see phase II in Fig. 1) to 
estimate the optimum from the resulting fit.  

Fig. 2 shows the proposed RSM algorithm in high-
level pseudo-code. It operates in a fully automated 
algorithmic way. When starting the algorithm, one has 
to choose the lower and upper limits of each input 
parameter in order to transform the whole search space 
into a [-1, 1]k hypercube, i.e., to transform the natural 
variables into coded variables (see step (1) in Fig. 2). 
Furthermore, an initial center point cnew and an initial 
half-width ω of the local region in the response surface 

must be specified. If not explicitly defined differently, 
we assume cnew = (0,…,0) as the initial value for the 
center point and [-0.2, 0.2]k for the local region. Local 
regions of the size [-0.2, 0.2]k up to the size of [-0.4, 
0.4]k are typically good choices. As we will later deal 
with a function that is only partially defined within the 
lower and upper bounds of the input parameters, a 
small local region seems to be appropriate. The main 
steps of the algorithm are performed in the while-loop 
from step (3) to step (27) in Fig. 2. In our 
implementation, we consider two types of stopping 
criteria, i.e., stop the RSM iteration if (i) the estimated 
optimal response is no longer improving sufficiently or 
(ii) the local region becomes too small. Note that the 
pseudo-code in Fig. 2 implements the second stopping 
rule, where ωstop is the half-width of the local region 
when the algorithm should stop. An implementation of 
the first criterion is quite similar. 

In each RSM iteration, the current local region is 
transformed into a [-1, 1]k hypercube. Then the 
response surface function f is approximated by a first-
order linear regression metamodel (see e.g. [15]). To 
test whether the estimated regression model adequately 
describes the behavior of the response in the current 
region of interest we consider the adjusted coefficient 
of determination, which is defined as the ratio of the 
variation explained by the metamodel to the total 
variation (see also [15]). If the first-order model gives 



an adequate approximation, a line-search along the 
path of steepest ascent/descent is applied to find a 
point of improved response that serves as a new center 
point. If the line-search does not yield an improved 
response the algorithm reduces the half-width of the 
local region at the last center point and starts a new 
RSM iteration. That is exactly what is implemented in 
steps (4) to (14) in Fig. 2. If the first-order model is 
found to be no adequate approximation of the response 
surface function, it is likely that the true response 
surface has significant curvature in the local region and 
may be better approximated by a second-order 
quadratic metamodel. Nevertheless, we recommend the 
approximation of a second-order model only in the 
final steps of the optimization procedure (i.e., if ω is 
less than 4 times the stop-width ωstop), since a second-
order model requires much more evaluations of the 
stochastic model than a first-order model does. Thus, a 
better strategy is to decrease the local region in order 
to better approximate a first-order model (see steps 
(14) and (25) in Fig. 2). 

In the final optimization phase, it may be reasonable 
to use a second-order model. As for the first-order 
model, a goodness-of-fit test is performed. If the 
approximated model shows no significant lack-of-fit, a 
point of improved response is predicted with a 
canonical analysis, i.e., the stationary point is derived 
from the first derivative of the regression metamodel 
(see steps (19) to (23) in Fig. 2). The nature of the 
stationary point, i.e., whether it is a maximum, a 
minimum, or a saddle point, can be determined by 
inspecting the signs of eigenvalues of a certain 
symmetric matrix B that is composed of the regression 
coefficients (see [15] for further details). At the end of 
all RSM iterations, the algorithm returns the center 
point of the local region, after transformation from 
coded to natural variables, as the optimal/best solution 
it could find. 

 
3.  Optimizing Numerical Models 

 
The RSM approach of the foregoing section 

requires a method to evaluate the responses yi for any 
given set of values of input parameters. In this section, 
we discuss how iterative numerical procedures of 
steady state analysis for CTMCs can be combined with 
RSM. Numerical analysis of a CTMC with generator 
matrix Q computes values for a set R of rate or 
impulse rewards by computation of a steady state 
distribution π. Distribution π is a solution of πQ = 0. 
Due to the large dimensions of Q, i.e., the large 
cardinality of the set of states S, and sparsity of Q, it is 
common practice to employ iterative fix point 

algorithms to solve πQ = 0; see [18] for a 
comprehensive textbook explanation. Simple methods 
for stationary analysis are the power method, the 
method of Jacobi, and the method of Gauss-Seidel. 
More involved methods include projection methods 
like GMRES and the method of Arnoldi. 
Decompositional methods like iterative Aggregation / 
Disaggregation methods and recent Multi-Level 
methods aim to solve equations at different levels of 
granularity. Selection criteria for application on a 
particular CTMC are speed of convergence, 
computation time, and memory requirements (plus 
availability in a tool). Since there is no clear best 
choice known for speed of convergence, required CPU 
time, in general, we focus on memory requirements. 

Generator matrices Q are usually automatically 
generated from some modeling formalism and 
typically provide some structure such that symbolic 
representations like MTBDDs, MxDs or Kronecker 
representations are particularly space-efficient, which 
moves the bottleneck in terms of space to the iteration 
vectors; see [14], [4] for a recent overview. Those data 
structures are based on a divide and conquer approach 
that makes effective use of repeated information in Q, 
such that it is represented in space just once but 
potentially used more often. Numerical methods differ 
in the number of vectors they require; for instance; 
Gauss-Seidel can be implemented with a single 
iteration vector, while projection methods need a 
significant number of vectors to represent a Krylov 
subspace. Therefore, we focus on Gauss-Seidel with 
relaxation (SOR) in the following. For any given 
iterative solution method, we need to decide on the 
initial distribution π0 and the required precision ε. 
Selection of initial distribution. RSM repeatedly 
solves CTMCs of the same model but for some 
modified input parameter values w, i.e., a set W of 
configurations is considered with corresponding 
generator matrices Qw for w ∈ W. A modification of 
parameters may have different effects on Qw. 
a) Dimensions and non-zero structure of all Qw in 
{Qw | w ∈ W} are the same, only numerical values at 
certain positions change. Those changes can be 
significant for the performance of numerical solution 
methods, since one may modify rates to introduce or 
remove different time scales in the model. However, 
evaluation of a set of matrices may imply that Qw can 
be derived from the generator matrix ′wQ  of a 
previous configuration ′w  without a costly generation 
from the model description. 
b) Dimensions and structure of the CTMC are 
changed. In that case, Qw has to be generated from the 
model and solution has to start from the beginning. 



In the following, we focus on case (a). It is well-
known that selection of π0 has an impact on the 
number of iterations needed to compute solution π. 
The repetitive application of a numerical solver to 
CTMCs of the same dimension but for different entries 
allows us to start a subsequent SOR solution with 
some previously computed π. Clearly, the more similar 
those CTMCs (as seen by the distance in the Euclidean 
space in Fig. 1) are, the more likely it is that a 
previously computed π for one CTMC will give a good 
initial distribution for another. Note that design points 
of the first experimental design are rather far apart but 
that RSM reduces the width of the local region, i.e., the 
distance between design points, the closer it gets to its 
termination. That can imply similarity of CTMCs and 
their solutions. In consequence, we formulate a 
heuristic strategy for selection of π0. 

Strategy 1: For the initial distribution π0 of the currently 
considered configuration w, use a previously computed 
solution ′π  of a configuration ′w  that is close to w. 

In RSM, we evaluate design points of first- or 
second-order models and design points during the line-
search. In a first-order model, the center point is close 
to the design points in the Euclidian space. In a 
second-order model with a cyclic evaluation of design 
points and during the line-search, the configuration 
considered directly before the current one is the 
closest. Thus, the selection has the additional positive 
effect that it is not necessary to store many previously 
computed solutions. 
Selection of precision. It is common practice to use 
several measures of distance to decide convergence; 
for example, they might include the maximum 
difference between consecutive iteration vectors 
d1 = maxs∈S{|πi(s)-πi+1(s)|}, the maximum residual 
d2 = maxs∈S{|v(s)|}, and the sum of residuals 
d3 = Σs∈S|v(s)| where v = πiQ. Convergence is 
identified if dk ≤ ε for k = 1, 2, 3 for some user-given 
threshold value ε. Note that all three measures are 
approximations. The response function makes use of π 
with the help of rate or impulse rewards. Since it is 
common practice to encode impulse rewards in the 
state space [6], we can consider a set X of rewards rx 
with reward vectors rx of non-negative real values and 
dimension |S|. The reward evaluation results in 
computation of weighted sums 

x xs Sr r (s) (s)
∈

= π∑  for x ∈ X. (1) 
Note that associated reward values often do come 

from a finite set of real values of small cardinality. Let 
Rx denote the set of such values; then 

x x
x r R s S,r (s) rr r (s)

∈ ∈ =
= π∑ ∑ . (2) 

Hence, if iteration vectors differ only in such a way 
that the inner sum in Eq. (2) remains mainly 
unchanged, the reward value will remain the same. 
Therefore, for iteration vectors of steady state solvers, 
a sequence rx based on intermediate vectors πi will 
converge due to convergence of πi, but the 
convergence rates may differ. Since RSM relies on a 
sufficiently accurate evaluation of the response 
function f, it may be possible to stop the iteration 
procedure for rather large values of ε if the evaluation 
of the response function has converged, i.e., we can 
define d4 = |f(w,πi)-f(w,πi+1)|} as a further measure for 
convergence where f(w,πi) gives the response for an 
intermediate vector πi and a model configuration w. 
Since in general, the convergence of the response 
function or its reward functions is as unknown as the 
convergence of πi vectors, it either requires 
intermediate evaluations or is only known a posteriori 
once the numerical procedure has converged. The 
evaluation of d1,…,d4 implies different efforts. While 
d1 is computationally inexpensive, d2 and d3 are 
inexpensive for the Power method and Jacobi but 
require an additional matrix-vector multiplication for 
SOR. d4 requires the evaluation of a set of rewards X 
and the subsequent evaluation of the algebraic 
expression of f. Hence, we look for ways to avoid the 
computation of solutions that are unnecessarily precise 
as well as frequent evaluation of d4. 

For certain models, the assumption that all matrices 
{Qw | w ∈ W} have a similar correspondence between 
the rate of convergence measured by d1,…,d3 and d4 is 
a heuristic that can be used to adapt parameters for a 
numerical solver, particularly the required accuracy ε. 
We propose the following heuristic strategy for RSM: 

 Strategy 2: 
1. Inspection step: Evaluate the points of the experimental 

design of the first local region that RSM considers with 
the procedure presented in Fig. 3 in order to determine for 
which ε = ε0 one does not observe a significant change of 
the response. 

2. Main step: Evaluate the remaining points during the 
RSM run just with precision ε0 to save iterations at the 
price of a potential lack of accuracy. 

 

Note that the inspection step implies that the 
procedure adapts itself at the beginning of the RSM 
optimization process. Clearly, there is a lot of room for 
variations based on the decision at which design points 
ε0 is determined and whether it should be determined 
once, occasionally, or frequently during the RSM 
algorithm. The inspection step itself is divided into two 
parts. In steps (2) to (6) in Fig. 3 the Gauss-Seidel 
solver is forced to continue iterating until the relative 
difference between consecutive response values is 
 



(1) π(0) := π0 ;    y(0) := f(π0) ;    i := 0 
(2) REPEAT 
(3) i :=i + 1 
(4) start Gauss-Seidel solver with π0 := π(i-1) until maximum 

residual d2 is below ε = 10-i 
(5) compute reward measures and evaluate response function 

y(i) := f(w,π(i)) 
(6) UNTIL |(y(i-1) – y(i)) / y(i-1)| < 10-2 
(7) k := i 
(8) REPEAT 
(9) i :=i + 1 
(10) start Gauss-Seidel solver π0 := π(i-1) until maximum residual 

d2 is below ε = 10-(k + (i-k)/10) 
(11) compute reward measures and evaluate response function 

y(i) := f(w,π(i)) 
(12) UNTIL |(y(i-1) – y(i)) / y(i-1)| < 10-4 
(13) RETURN ε0 := ε 

Fig. 3. Inspection step of RSM strategy 2 
below a threshold 10-2 where response values y(i), 
i=1,2,…, are computed from intermediate distributions 
π(i) only if d2 < 10-i, i.e., if the accuracy of the 
intermediate distribution is increased by one order of 
magnitude. In the second part of the inspection step 
(see steps (8) to (12) in Fig. 3), the response function is 
evaluated more frequently in order to determine the 
value of ε0 more precisely such that the relative 
difference between the responses is below 10-4. The 
reason for not applying the inspection step for every 
evaluation of the stochastic model is simply to avoid 
the effort of a multiple computation of the response 
function during the iterations of the equation solver in 
the main step of the RSM optimization process. 

Recall that RSM estimates a direction of steepest 
ascent/descent with the help of a first-order model that 
only approximates the real response surface. Hence, 
some lack of precision from the estimation would add 
only to the imprecision of the gradient estimation and 
need not be critical. A determination of threshold 
values for that trade-off is clearly model-dependent. 
Nevertheless, the following assumption seems natural. 
Since RSM initially considers rather large regions and 
it is likely to be far from the optimal solution, a very 
moderate precision is supposed to be sufficient to 
identify a promising direction. In a later phase and 
closer to an optimum, a higher accuracy is necessary to 
identify an optimum or to get close to it. That results in 
the third heuristic strategy that we propose. 

Strategy 3: Start with an initial precision of ε0 and increase 
the accuracy if RSM is forced to reduce the local region of a 
first-order model significantly. 

In strategy 3, the initial precision ε0 results from the 
inspection step of strategy 2. For our implementation, 
we considered a reduction of the half-width ω of the 
local region below 0.06 (in coded variables) to be 
significant. 

4.  Optimizing Class-Based Queueing 

In a class-based queueing system (CBQ), the 
requirement for link-sharing is to share bandwidth on a 
network link between multiple traffic classes, where 
each traffic class wants to receive a guaranteed share 
of the link bandwidth during congestion, but where 
bandwidth that is not being used by one traffic class 
should be available to other traffic classes sharing the 
link. In CBQ, a conceptual distinction is made between 
a general scheduler and a link-sharing scheduler [7]. 
The general scheduler is usually a weighted Round 
Robin scheduler (WRR) that is controlled by the link-
sharing scheduler (see Fig. 4). Incoming traffic is 
classified into the appropriate queue according to a set 
of filtering rules. The general scheduler selects packets 
from the queues in a way that guarantees for each 
traffic class at least a predefined bandwidth portion of 
the overall output link bandwidth. A traffic estimator, 
located at the output link, measures the departure time 
between successive packets of each class and 
characterizes each class as over-limit, under-limit, or 
at-limit. A class is called over-limit if it has recently 
used more than its guaranteed bandwidth, under-limit 
if it has used less than its guaranteed bandwidth, and 
at-limit otherwise. If a queue of a certain traffic class is 
empty, the link-sharing scheduler distributes the excess 
bandwidth among the remaining classes. Furthermore, 
if congestion occurs, the link-sharing scheduler makes 
over-limit classes inactive so that the general scheduler 
does not serve them until their suspension period ends. 

For modeling the class-based queueing system we 
used the generalized stochastic Petri nets (GSPN) 
notation [1]. According to [3], the model is arranged in 
a hierarchical structure such that efficient solution 
methods based on Kronecker representation can be 
applied. In particular, we consider three traffic classes, 
each of which comprises one sub-model. Furthermore, 
the arrival process of data packets is contained in a 
fourth sub-model. For traffic modeling we considered 
a 5-state phase-type distribution, which was fitted to 
the LBL-TCP-3 trace from in the Internet Traffic 
Archive [8]. For distribution fitting, we used the tool 
G-FIT [5]. The GSPN model, as well as a detailed 
description of its behavior, is available for download 
on the Web page of the APNN toolbox [2]. 

� � � � � � � � � � � � 	 
 � 
 � � � 

� � � � 	 


� � � � �  �  	 �

� � � � 
 � �  � �

� � 
 � � 
 � �  � �

� 	 � 	 � � � � � � � 	 � � � 	 �

� � � � �  �

	 � 
  � � 
 � �

�  � � � � � � �  � �

� � � 	 � � � 	 �

 
Fig. 4. Class-based queueing scheduler 



In the following optimization problem, the weights 
of WRR should be configured such that the sum of the 
average delays experienced by packets of each traffic 
class is minimized under a given delay constraint for 
each class. We assume that the QoS requirements of 
traffic class i are such that the average delay for each 
class should be less than a predefined class-specific 
bound *

iD , i = 1,2,3. 
From the stationary solution of the CBQ model, 

performance measures of interest can be computed. 
We consider performance measures that depend on the 
setting of WRR weights w = (w1, w2, w3). Denote the 
mean queue length of class i by MQLi(w) and the 
throughput of class i by THUi(w). Applying Little’s 
law, the delay of class i is given by Di(w) = MQLi(w) / 
THUi(w). With that definition, the formal optimization 
problem is: 

3
ii 1D ( ) min

=
→∑ w  with constraints  

*
i iD ( ) D≤w , i = 1,2,3, and 3

ii 1 w 1
=

=∑ . 
(3) 

The constrained optimization problem (3) can be 
transformed into the unconstrained form with the help 
of a penalty function 

{ }
3 3

*
i i i

i 1 i 1
f ( ) D ( ) max 0,D ( ) D

= =
= + β −∑ ∑w w w , 

 
(4) 

where f(w) is the response function that shall be 
minimized and β is a penalty coefficient. Furthermore, 
we assume that the weights are normalized before we 
evaluate f(w), so we can omit the second constraint in 
(3). Note that the penalty coefficient β is a fixed value, 
so the response function (4) remains the same during 
the optimization process. This is different in [3] where 
β is changed during the optimization procedure. 

 
5.  Experimental Results 

 
In this section, we evaluate the CBQ model for a 

particular configuration and workload with the goal of 
optimizing the setting of WRR weights w. The 
unconstrained objective function Eq. (4) is analyzed 
with penalty coefficient β = 1. In the CBQ model, we 
assume that the packet classifier assigns the same share 
of arriving packets to each queue and let 20 packets 
arrive per time unit in each queue on average. The 
overall bandwidth of the network link is set to a 
transfer rate of 100 packets per time unit. Let D* = 
(0.025, 0.25, 1) be a vector with predefined delay 
constraints. For a consistency check, we calculate the 
minimal affordable delay for each class, e.g., for class 
1, the minimal affordable delay is 0.01216, which is 
achieved for weights w = (1, 0, 0). By analogous 
calculations for classes 2 and 3, we check that the 

model is able to comply with D* at least for individual 
classes. 

For any fixed w, we obtain a CTMC with 1,474,704 
states and 10,151,988 non-zero entries. Different 
settings of w do not change the dimension or non-zero 
structure of Q; only individual non-zero entries depend 
on w. All rates are in a range of [3.64, 104]. The large 
differences in rates result from control tokens that 
circulate rather quickly relative to the service delays at 
a queue. We focus on iterations of the numerical solver 
as a hardware-independent measure. It took about 10 
minutes to compute 1000 iterations not taking into 
account the transformation of the model into a CTMC 
and the evaluation of the results. 

The numerical solution shows a remarkable 
behavior with respect to convergence of residuals, 
rewards, and response function f. Figs. 5 and 6 show a 
sequence of values for residuals, throughputs, queue 
lengths, and response function over the number of 
iterations performed by the numerical solver. 
Individual measures are taken every 100 iteration steps 
of an SOR solver, with a relaxation of 0.95 that starts 
with a uniform distribution for π0. In this experiment, 
we consider fixed weights w = (0.715, 0.207, 0.078). 
We observe a very slow rate of convergence for 
residuals (maximum and sum); after 6000 steps, the 
maximum residual is d2 < 10-7. In practice, solutions of 
d2 < 10-8 to d2 < 10-12 would be considered reasonably 
accurate.  The values of throughputs and queue lengths 
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Fig. 5. Convergence behavior of SOR solver: 
Throughput and queue length (scenario 1) 
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Fig. 6. Convergence behavior of SOR solver: 
Residuals and response (scenario 1) 
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Fig. 7. Convergence behavior of SOR solver: 
Residuals and response (scenario 2) 
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Fig. 8. Response surface for the class-based 
queueing system 
vary significantly within the first 1500 steps and 
stabilize for more iteration steps, so convergence is 
quicker than for residuals. The same holds true for the 
curve of response function f in Fig. 6. We exercised 
different values for relaxation and observed an 
increased convergence rate for increasing values of the 
relaxation factor up to 1.15; however, at 1.2, we 
observed divergence. Hence, for the experiments 
described in this section, we decided on a defensive 
selection of the relaxation factor as 0.95. Since the 
CTMC varies according to values of w, curves of the 
kind shown in Figs. 5 and 6 are expected to vary as 
well. Fig. 7 gives analogous curves for a CTMC with 
w = (0.33, 0.33, 0.34). Convergence for residuals is 
better; we achieve d2 < 10-5 in 2000 iterations, and d2 < 
10-8 in 3000 iterations. Both examples confirm our 
assumption that an approximate evaluation of f based 
on numerical solutions of low accuracy can give 
reasonably good approximations in significantly less 
computation time. 

We computed a grid over the response surface with 
precisions d2 < 10-4 and d2 < 10-8 and found that the 
numerical differences between the response values are 
insignificant, i.e., the maximum difference was below 
0.004. The entire response surface for which we do not 
provide a diagram for lack of space, has very steep 
areas near the edges and a very flat area around the 
optimum; the best configuration we could identify is at 
w = (0.5774, 0.2142, 0.2084). Fig. 8 presents a region 
of the response surface that contains the optimum. 
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Fig. 9. Courses of RSM runs with ε = 10-2 
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Fig. 10. Courses of RSM runs with ε = 10-3 
Note that w3 = 1–w1–w2 and w3 is thus implicitly 

represented in the figure as well. Clearly, the 
computation of a grid over the entire surface is only 
used for illustration and validation purposes. The RSM 
algorithm only evaluates relatively few spots on the 
response surface. 

Two of the input parameters of the RSM algorithm 
are the precision of the numerical solution, for 
instance, measured by the maximum residual d2, and 
the initial values of w, whose impact we evaluate for 
the given model. We conduct experiments for d2 < ε 
with ε = 10-i, i=2,…,6, and two initial settings for w, 
namely w1 = (0.33, 0.33, 0.34) and w2 = (0.5, 0.25, 
0.25). Fig. 9 shows center points on a course of the 
RSM algorithm for w1, w2, and d2 < 10-2. A filled black 
symbol indicates the initial configuration, a filled gray 
symbol the final result, and an asterisk the optimal 
solution from the grid evaluation of Fig. 8. For RSM 
we considered stopping rule (ii) introduced in Section 
2.2, i.e., RSM stops if the half-width of the local 
region becomes smaller than ωstop = 0.01. In Fig. 9, 
both computations get in the region of the optimum; 
however, the quality of the results suffers from lack of 
precision. Fig. 10 gives results for a precision of d2 < 
10-3, where RSM gets close to the optimum. A similar 
behavior is observed for a better precision, i.e., ε = 10-4 
and ε = 10-6. We use the results as an indication that 
the RSM algorithm is robust with respect to the 
selection of an initial configuration. In the following, 
we study the three different strategies for RSM 
introduced in Section 3. 

In Fig. 11, we perform RSM with different levels of 
precision and consider the quality of the results whose 
values are given in Tab. 1. RSM(i) denotes an RSM 



run with precision d2 < 10-i. The column “Weights” 
gives the final value of w of the RSM algorithm, and 
the column “Response” gives the exact value f(w), i.e., 
computed from an additional numerical solution with 
d2 < 10-10. The results show that RSM with a precision 
higher than 10-4 does not yield better results. It is not 
worthwhile. A precision of 10-2 gives results whose 
response function differs from the response for 
precision 10-4 by less than 1%. We focus on f(w) rather 
than the Euclidian distance of w from the optimal 
solution; the best value of f that we obtained is 
f(0.5774, 0.2142, 0.2084) = 0.106959. Recall that the 
SOR precision that is required in order to compute the 
response function with sufficient accuracy can also be 
determined by the algorithm presented in Fig. 3 of 
Section 3. In fact, running that algorithm for the five 
design points of the experimental design that RSM 
uses for the first local region yields a required 
precision of ε0 = 10-4.1 when the computed precisions 
for the design points are averaged. Thus, strategy 2 can 
safely be applied in this case. The following 
experimental results indicate that for this example, 
RSM succeeds even for a lower precision. However, 
we believe that for strategy 2 we chose constants that 
will perform reasonably well for a range of models. 
We do not want to calibrate the algorithm in Fig. 3 too 
much to our specific example. 

To reveal the impact of strategy 1, we experimented 
with two cases: a) a uniform initial distribution and b) 
an initial distribution according to strategy 1, i.e., the 
initial distribution is determined from a previously 
computed distribution π of a configuration that is close 
to w. For strategy 3, note that evaluation of all points 
of a single first- or second-order model should take 
place with the same precision, since Figs. 6 and 7 
indicate that results obtained at different levels of 
 
Tab. 1. Settings of the weights found by RSM 

Weights Response
RSM(2) (0.600, 0.235, 0.165) 0.107293
RSM(3) (0.559, 0.234, 0.207) 0.107010
RSM(4) (0.577, 0.214, 0.209) 0.106959
RSM(5) (0.577, 0.213, 0.210) 0.106959  
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Fig. 11. Courses of RSM runs with same 
starting point but different SOR precisions 

Tab. 2. RSM runs with different strategies 
π0 ε0 ε1 #Iterations Response

RSM(2) uniform 10-2 39100 0.107293
RSM(3) uniform 10-3 44000 0.107010
RSM(4) uniform 10-4 87600 0.106959
RSM(2,3) previous 10-2 10-3 14750 0.113713
RSM(2,4) previous 10-2 10-4 31500 0.106993
RSM(3,4) previous 10-3 10-4 32900 0.106994  
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Fig. 12. Effect of different strategies 

precision differ significantly in the steep initial part of 
the curves of response function f. 

In Fig. 12, we consider the effect of using strategies 
1 and 3 for the RSM algorithm in combination. 
RSM(i,j) denotes an RSM run that starts with precision 
10-i and switches over to precision 10-j if the half-width 
ω of the local region that RSM considers decreases to 
below 0.06 (see strategy 3 in Section 3). As in the 
previous figures, a filled gray symbol denotes a final 
result. Tab. 2 gives detailed information on the applied 
variant of RSM, i.e., it shows whether the selected 
initial distribution was uniform or a previously 
computed one (column π0), it shows the selected 
precision (column ε0), and it shows the observed total 
number of iterations of the numerical solver (column 
#Iterations) that are summed over all evaluations of 
design points. If there is an entry in column ε1, it 
indicates that the algorithm initially starts with the 
precision given in column ε0 and then switches to a 
numerical solution with higher precision ε1. Note that 
differences in Tab. 2 result not only from different 
precisions but also from the fact that RSM performs a 
different total number of steps and visits different 
design points. RSM(2,4) and RSM(3,4) yield results of 
similar quality, but RSM(2,4) saves about 1400 
iterations. RSM(2,3) saves a lot on iterations because 
of two effects. First, low precision reduces the number 
of iterations per design point, but more importantly, 
the RSM algorithm terminates after a few steps being 
misled by the imprecise values of the numerical 
solution. For low precisions, we do not achieve a better 
result with RSM(i,j) than by using RSM with no 
strategy. However, that means only that a change for 
the maximum residuals from 10-2 to 10-3 is not enough 
to find an appropriate maximum. If we compare results 
of RSM(3,4) and RSM(2,4), we gain a significantly 



better result than for the fixed precision variants 
RSM(2) and RSM(3) and only a slightly worse result 
than RSM(4). Considering the computational effort, 
the savings achieved by strategies 1 and 3 are 
significant; for instance, RSM(2,4) reduces the number 
of necessary iterations from 87600 to 31500. Note that 
we get even significantly better results with RSM(2,4) 
or RSM(3,4) that need about a fourth less iterations 
than RSM(3). 

In [3], a more simple variant of the CBQ model 
with a Poisson arrival stream is considered with a 
similar objective function. In [3], the minimal sum of 
delays for a comparable configuration of the model is 
found at w = (0.7157, 0.02768, 0.09141) with delays D 
= (0.02367, 0.03373, 0.05860). In our CBQ model, 
that configuration has a response of 0.11601. Running 
the RSM algorithm with a penalty coefficient β = 1, 
the best solution found is w = (0.57737, 0.21425, 
0.20838) with corresponding delays D = (0.02614, 
0.03958, 0.0401) and a response of 0.10696. In this 
solution, the delay constraint for the first traffic class is 
slightly violated. Increasing the impact of the penalty 
coefficient to β = 5, the best solution found is 
w = (0.64438, 0.18170, 0.17392) with corresponding 
delays D = (0.02497, 0.04073, 0.04176). With β = 5, 
the constraints are fulfilled, and the sum of delays is 
lower than in the configuration found in [3]. Thus, we 
can conclude that the presented RSM algorithm for 
optimizing numerical models is a quite versatile 
approach that outperforms a previous approach in 
terms of quality of the solution. 

 
6.  Conclusions 

 
We presented an approach for the optimization of 

stochastic models that is based on the response surface 
methodology. In contrast to previous work, our 
approach works in a fully automated way and is 
tailored to the optimization of computationally 
expensive numerical models. During the optimization 
process, we iteratively use first- and second-order 
linear regression metamodels combined with a 
gradient-based method to find a direction of 
improvement. 

The numerical analysis is based on a Gauss-Seidel 
solver with relaxation that uses a hierarchical 
Kronecker representation for a given continuous time 
Markov chain. Since RSM implies a repeated solution 
of related CTMCs, we propose three strategies to 
reduce the amount of computation time per evaluation 
of the response function. The overall approach is 
evaluated with the help of an application example of a 
class-based queueing system. We determined a 

configuration of the queueing weights such that the 
sum of delays is minimized under given delay 
constraints. 
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