
Combining Response Surface Methodology with Numerical Models for
Optimization of Class-Based Queueing Systems*

Peter Kemper, Dennis Müller, and Axel Thümmler
University of Dortmund

Department of Computer Science, 44221 Dortmund, Germany
http://ls4-www.cs.uni-dortmund.de/MuS

Abstract

In general, decision support is one of the main
purposes of model-based analysis of systems. Response
surface methodology (RSM) is an optimization
technique that has been applied frequently in practice,
but few automated variants are currently available. In
this paper, we propose the combination of RSM with
numerical analysis methods to solve continuous time
Markov chain models of class-based queueing systems
(CBQ). We consider first- and second-order models in
RSM to identify an optimal parameter configuration
for CBQ as part of the differentiated service
architecture. Among the many known numerical
solution methods for large Markov chains, we consider
a Gauss-Seidel solver with relaxation that relies on a
hierarchical Kronecker representation as implemented
in the APNN Toolbox. To effectively apply the
proposed optimization methodology we determine a
suitable configuration of RSM and compare the results
with previous results for optimizing CBQ.

1. Introduction

In model-based design of computer and

communication systems, optimization techniques can
help to identify optimal or nearly optimal
configurations to support decision-making. From a
conceptual point of view, an optimization procedure
searches for those parameter settings that maximize or
minimize a given objective function f. In many model-
based designs f depends on a stochastic model of a
discrete-event system and different opportunities for its
evaluation exist. In the case of finite state Markov
chains, numerical methods are known that give exact
results with respect to a transient or steady state
distribution. Furthermore, simulation is an approach
that is widely applicable due to its relative lack of

constraints. However, simulation of stochastic discrete
event systems yields only estimates of the performance
measures, typically accompanied by confidence
intervals [12].

In this paper, we consider f to be defined on a
family of continuous time Markov chains (CTMCs).
Numerical analysis of CTMCs has a number of
challenges. In particular, the generator matrix Q of a
CTMC is often large and very sparse. That has
stimulated a lot of research on data structures that
represent Q in a space-efficient way and iterative
solution methods that converge quickly to the resulting
distribution. In the current situation, the space used for
the resulting distribution is the bottleneck in terms of
space if state-of-the-art representations of Q are
employed, i.e., symbolic structures like multi-terminal
binary decision diagrams or matrix diagrams and
structures based on a matrix algebra like modular and
hierarchical Kronecker representations; see [14], [4]
for recent overviews. An ample variety of numerical
methods exist for steady state analysis (see [18] for a
textbook overview); however, no technique is known
yet that is clearly superior in general. However, a
common property of all techniques is that
computations to obtain exact results are relatively
costly. That has considerable impact on the selection of
an optimization procedure to be applied for objective
functions that require numerical analysis of a CTMC.

Optimization is a research area with a long
tradition, particularly in the field of operational
analysis, which has given rise to a wealth of
techniques. In particular, genetic algorithms and
evolutionary strategies have gained a lot of attention
recently. Despite their impressive performance in
many areas, the fact that those techniques tend to
require an evaluation of the objective function at many
parameter settings has motivated us to focus on a
different and also well-established method, namely the
response surface methodology (RSM) [15]. It was
originally developed for optimization based on real

* This material is based upon work supported by DFG, SFB 559,
and DoMuS, University of Dortmund.

experiments, but can be easily extended for use with
stochastic models. However, although RSM has been
known for a long time and a well-established theory
has been developed, the algorithm is usually described
in such a way that several steps must be done
manually, so that the approach cannot be integrated in
an optimization package in which the whole
experimentation and optimization approach is done
automatically.

Recently, Neddermeijer, Oortmarssen, Piersma, and
Dekker proposed a framework for response surface
methodology for optimization of simulation models
[16]. Their framework shows a possible way to
combine the various mathematical and statistical
methods that belong to response surface methodology.
Nevertheless, their framework is still far from being an
automated algorithm. Kleijnen and Sargent proposed a
procedure for linear regression metamodeling in
random simulation [11]. Their approach distinguishes
between fitting and validating a single metamodel with
respect to an underlying simulation model. To the best
of our knowledge, until now no fully automated
realization of the response surface methodology that is
tailored to the optimization of computationally
expensive numerical models has been available.

In this paper, we present a novel approach for the
optimization of numerical models that is based on the
response surface methodology. Our approach
iteratively uses first- and second-order linear
regression metamodels combined with a gradient-
based method to find a direction of improvement. Of
particular importance is the algorithmic realization of
RSM such that it can run with very limited information
or support from a user. Since RSM is able to tolerate
imprecise evaluation of the objective function to a
certain extent, we make use of this effect to adaptively
adjust the precision of an iterative procedure being
applied to the steady state analysis of a CTMC.
Furthermore, we observe and make use of the
phenomenon that values of an objective function that
result from an iterative solution may converge much
faster than the iterative solution itself. That gives rise
to a novel, adaptive, and heuristic approach for RSM
optimization with numerical solution methods. The
approach trades computation time for accuracy. As an
application example, we consider the optimization of a
class-based queueing system [7], [13]. Class-based
queueing (CBQ) is a “per hop” packet-scheduling
mechanism that provides differentiated service to
traffic flows of different types and is used as part of
the differentiated service architecture (DiffServ) [9].
According to [3], we develop a stochastic Petri net
model of a CBQ system and apply numerical analysis
based on a Gauss-Seidel solver with relaxation for a

hierarchical Kronecker representation of the generator
matrix. The APNN toolbox is used for modeling and
analysis [2].

The paper is organized as follows. Section 2
develops the fully automated RSM algorithm. Section
3 considers the analysis of stochastic models via
numerical methods and develops three strategies for
combining RSM with numerical models. In Section 4,
a stochastic model of a class-based queueing system is
developed, and the optimization task is defined.
Section 5 presents experimental results.

2. Response Surface Methodology

From an abstract mathematical point of view, a

stochastic model can be represented by a function
φ(w), which maps a vector of input parameters w =
(w1,…,wk) onto a set of performance measures of
interest. Since φ represents the stochastic nature of a
stochastic model, the output performance measures are
random variables, and different characteristics of their
distributions such as mean, variance, further moments,
or quantiles could be of interest. That relationship is
expressed by M[φ(w)] = f(w), where f is called the
response surface function and M is a mapping from the
random variables onto a real-valued algebraic
combination of certain characteristics of their
distributions. The most frequently considered
characteristic is the expectation of those random
variables; however, any other measure can be used
instead, given that the analysis method employed to
compute φ(w) is able to support it.

The general optimization problem discussed in this
section is characterized by finding the input parameters
that maximize/minimize the response surface function.
Since φ is only implicitly represented as a stochastic
model, or in other words as a black box, only those
optimization methods that do not exploit the structure
of φ can be applied. To solve that optimization

� �

� �

�

�

�

�
� �

Fig. 1. Illustration of the Response Surface
Methodology in two dimensions

(1) Transform natural variables into coded variables
(2) Choose initial center point cnew := (0,…,0) and half-width of local region ω := 0.2
(3) WHILE ω > ωstop DO
(4) cold := cnew
(5) Transform local region with center point cold into a [-1,1]k hypercube
(6) Approximate response surface function in the local region with center point cold and at least k design points by a first-order linear

regression metamodel
(7) Test the first-order model for goodness-of-fit according to the adjusted coefficient of determination
(8) IF first-order model is adequate THEN DO
(9) determine direction of steepest ascent/descent and step size
(10) REPEAT
(11) go one step in direction of steepest ascent/descent and determine the response for the new input parameters via a single

evaluation of the stochastic model
(12) UNTIL new response results in no further improvement
(13) cnew := input parameters of last improvement of the response
(14) IF cnew = cold THEN set new half-width ω := ω/2
(15) ELSE DO
(16) IF ω < 4·ωstop THEN DO
(17) Approximate the response surface in the local region with center point cold by a second-order linear regression metamodel
(18) Test the second-order model for goodness-of-fit according to the adjusted coefficient of determination
(19) IF second-order model is adequate THEN DO
(20) Determine stationary point of the second-order model
(21) Determine type of stationary point according to the signs of the eigenvalues of matrix B
(22) IF type of stationary point conforms with optimization goal THEN cnew = stationary point
(23) OD
(24) OD
(25) set new half-width ω := ω/2
(26) OD
(27) OD
(28) RETURN optimal solution cnew

Fig. 2. Pseudo-code of the RSM optimization algorithm
problem, we use the Response Surface Methodology
(RSM) [15]. RSM is an optimization method that is
able to identify a (local) optimum. In contrast to, for
example, evolutionary algorithms [17] and simulated
annealing [10], it is a deterministic optimization
method. In RSM, local marginal effects of the
stochastic model are estimated by regression
metamodels to find a direction of improvement. Fig. 1
shows a possible course of the general RSM procedure
in a two-dimensional search space. In the local-
exploration phase (see phase I in Fig. 1), RSM uses a
sequence of first-order regression metamodels,
combined with a steepest ascent/descent search. In that
phase, four points in a square are simulated, and a first-
order regression model is approximated to characterize
the response surface around the current center point. In
the final optimization phase, RSM uses a second-order
regression metamodel (see phase II in Fig. 1) to
estimate the optimum from the resulting fit.

Fig. 2 shows the proposed RSM algorithm in high-
level pseudo-code. It operates in a fully automated
algorithmic way. When starting the algorithm, one has
to choose the lower and upper limits of each input
parameter in order to transform the whole search space
into a [-1, 1]k hypercube, i.e., to transform the natural
variables into coded variables (see step (1) in Fig. 2).
Furthermore, an initial center point cnew and an initial
half-width ω of the local region in the response surface

must be specified. If not explicitly defined differently,
we assume cnew = (0,…,0) as the initial value for the
center point and [-0.2, 0.2]k for the local region. Local
regions of the size [-0.2, 0.2]k up to the size of [-0.4,
0.4]k are typically good choices. As we will later deal
with a function that is only partially defined within the
lower and upper bounds of the input parameters, a
small local region seems to be appropriate. The main
steps of the algorithm are performed in the while-loop
from step (3) to step (27) in Fig. 2. In our
implementation, we consider two types of stopping
criteria, i.e., stop the RSM iteration if (i) the estimated
optimal response is no longer improving sufficiently or
(ii) the local region becomes too small. Note that the
pseudo-code in Fig. 2 implements the second stopping
rule, where ωstop is the half-width of the local region
when the algorithm should stop. An implementation of
the first criterion is quite similar.

In each RSM iteration, the current local region is
transformed into a [-1, 1]k hypercube. Then the
response surface function f is approximated by a first-
order linear regression metamodel (see e.g. [15]). To
test whether the estimated regression model adequately
describes the behavior of the response in the current
region of interest we consider the adjusted coefficient
of determination, which is defined as the ratio of the
variation explained by the metamodel to the total
variation (see also [15]). If the first-order model gives

an adequate approximation, a line-search along the
path of steepest ascent/descent is applied to find a
point of improved response that serves as a new center
point. If the line-search does not yield an improved
response the algorithm reduces the half-width of the
local region at the last center point and starts a new
RSM iteration. That is exactly what is implemented in
steps (4) to (14) in Fig. 2. If the first-order model is
found to be no adequate approximation of the response
surface function, it is likely that the true response
surface has significant curvature in the local region and
may be better approximated by a second-order
quadratic metamodel. Nevertheless, we recommend the
approximation of a second-order model only in the
final steps of the optimization procedure (i.e., if ω is
less than 4 times the stop-width ωstop), since a second-
order model requires much more evaluations of the
stochastic model than a first-order model does. Thus, a
better strategy is to decrease the local region in order
to better approximate a first-order model (see steps
(14) and (25) in Fig. 2).

In the final optimization phase, it may be reasonable
to use a second-order model. As for the first-order
model, a goodness-of-fit test is performed. If the
approximated model shows no significant lack-of-fit, a
point of improved response is predicted with a
canonical analysis, i.e., the stationary point is derived
from the first derivative of the regression metamodel
(see steps (19) to (23) in Fig. 2). The nature of the
stationary point, i.e., whether it is a maximum, a
minimum, or a saddle point, can be determined by
inspecting the signs of eigenvalues of a certain
symmetric matrix B that is composed of the regression
coefficients (see [15] for further details). At the end of
all RSM iterations, the algorithm returns the center
point of the local region, after transformation from
coded to natural variables, as the optimal/best solution
it could find.

3. Optimizing Numerical Models

The RSM approach of the foregoing section

requires a method to evaluate the responses yi for any
given set of values of input parameters. In this section,
we discuss how iterative numerical procedures of
steady state analysis for CTMCs can be combined with
RSM. Numerical analysis of a CTMC with generator
matrix Q computes values for a set R of rate or
impulse rewards by computation of a steady state
distribution π. Distribution π is a solution of πQ = 0.
Due to the large dimensions of Q, i.e., the large
cardinality of the set of states S, and sparsity of Q, it is
common practice to employ iterative fix point

algorithms to solve πQ = 0; see [18] for a
comprehensive textbook explanation. Simple methods
for stationary analysis are the power method, the
method of Jacobi, and the method of Gauss-Seidel.
More involved methods include projection methods
like GMRES and the method of Arnoldi.
Decompositional methods like iterative Aggregation /
Disaggregation methods and recent Multi-Level
methods aim to solve equations at different levels of
granularity. Selection criteria for application on a
particular CTMC are speed of convergence,
computation time, and memory requirements (plus
availability in a tool). Since there is no clear best
choice known for speed of convergence, required CPU
time, in general, we focus on memory requirements.

Generator matrices Q are usually automatically
generated from some modeling formalism and
typically provide some structure such that symbolic
representations like MTBDDs, MxDs or Kronecker
representations are particularly space-efficient, which
moves the bottleneck in terms of space to the iteration
vectors; see [14], [4] for a recent overview. Those data
structures are based on a divide and conquer approach
that makes effective use of repeated information in Q,
such that it is represented in space just once but
potentially used more often. Numerical methods differ
in the number of vectors they require; for instance;
Gauss-Seidel can be implemented with a single
iteration vector, while projection methods need a
significant number of vectors to represent a Krylov
subspace. Therefore, we focus on Gauss-Seidel with
relaxation (SOR) in the following. For any given
iterative solution method, we need to decide on the
initial distribution π0 and the required precision ε.
Selection of initial distribution. RSM repeatedly
solves CTMCs of the same model but for some
modified input parameter values w, i.e., a set W of
configurations is considered with corresponding
generator matrices Qw for w ∈ W. A modification of
parameters may have different effects on Qw.
a) Dimensions and non-zero structure of all Qw in
{Qw | w ∈ W} are the same, only numerical values at
certain positions change. Those changes can be
significant for the performance of numerical solution
methods, since one may modify rates to introduce or
remove different time scales in the model. However,
evaluation of a set of matrices may imply that Qw can
be derived from the generator matrix ′wQ of a
previous configuration ′w without a costly generation
from the model description.
b) Dimensions and structure of the CTMC are
changed. In that case, Qw has to be generated from the
model and solution has to start from the beginning.

In the following, we focus on case (a). It is well-
known that selection of π0 has an impact on the
number of iterations needed to compute solution π.
The repetitive application of a numerical solver to
CTMCs of the same dimension but for different entries
allows us to start a subsequent SOR solution with
some previously computed π. Clearly, the more similar
those CTMCs (as seen by the distance in the Euclidean
space in Fig. 1) are, the more likely it is that a
previously computed π for one CTMC will give a good
initial distribution for another. Note that design points
of the first experimental design are rather far apart but
that RSM reduces the width of the local region, i.e., the
distance between design points, the closer it gets to its
termination. That can imply similarity of CTMCs and
their solutions. In consequence, we formulate a
heuristic strategy for selection of π0.

Strategy 1: For the initial distribution π0 of the currently
considered configuration w, use a previously computed
solution ′π of a configuration ′w that is close to w.

In RSM, we evaluate design points of first- or
second-order models and design points during the line-
search. In a first-order model, the center point is close
to the design points in the Euclidian space. In a
second-order model with a cyclic evaluation of design
points and during the line-search, the configuration
considered directly before the current one is the
closest. Thus, the selection has the additional positive
effect that it is not necessary to store many previously
computed solutions.
Selection of precision. It is common practice to use
several measures of distance to decide convergence;
for example, they might include the maximum
difference between consecutive iteration vectors
d1 = maxs∈S{|πi(s)-πi+1(s)|}, the maximum residual
d2 = maxs∈S{|v(s)|}, and the sum of residuals
d3 = Σs∈S|v(s)| where v = πiQ. Convergence is
identified if dk ≤ ε for k = 1, 2, 3 for some user-given
threshold value ε. Note that all three measures are
approximations. The response function makes use of π
with the help of rate or impulse rewards. Since it is
common practice to encode impulse rewards in the
state space [6], we can consider a set X of rewards rx
with reward vectors rx of non-negative real values and
dimension |S|. The reward evaluation results in
computation of weighted sums

x xs Sr r (s) (s)
∈

= π∑ for x ∈ X. (1)
Note that associated reward values often do come

from a finite set of real values of small cardinality. Let
Rx denote the set of such values; then

x x
x r R s S,r (s) rr r (s)

∈ ∈ =
= π∑ ∑ . (2)

Hence, if iteration vectors differ only in such a way
that the inner sum in Eq. (2) remains mainly
unchanged, the reward value will remain the same.
Therefore, for iteration vectors of steady state solvers,
a sequence rx based on intermediate vectors πi will
converge due to convergence of πi, but the
convergence rates may differ. Since RSM relies on a
sufficiently accurate evaluation of the response
function f, it may be possible to stop the iteration
procedure for rather large values of ε if the evaluation
of the response function has converged, i.e., we can
define d4 = |f(w,πi)-f(w,πi+1)|} as a further measure for
convergence where f(w,πi) gives the response for an
intermediate vector πi and a model configuration w.
Since in general, the convergence of the response
function or its reward functions is as unknown as the
convergence of πi vectors, it either requires
intermediate evaluations or is only known a posteriori
once the numerical procedure has converged. The
evaluation of d1,…,d4 implies different efforts. While
d1 is computationally inexpensive, d2 and d3 are
inexpensive for the Power method and Jacobi but
require an additional matrix-vector multiplication for
SOR. d4 requires the evaluation of a set of rewards X
and the subsequent evaluation of the algebraic
expression of f. Hence, we look for ways to avoid the
computation of solutions that are unnecessarily precise
as well as frequent evaluation of d4.

For certain models, the assumption that all matrices
{Qw | w ∈ W} have a similar correspondence between
the rate of convergence measured by d1,…,d3 and d4 is
a heuristic that can be used to adapt parameters for a
numerical solver, particularly the required accuracy ε.
We propose the following heuristic strategy for RSM:

 Strategy 2:
1. Inspection step: Evaluate the points of the experimental

design of the first local region that RSM considers with
the procedure presented in Fig. 3 in order to determine for
which ε = ε0 one does not observe a significant change of
the response.

2. Main step: Evaluate the remaining points during the
RSM run just with precision ε0 to save iterations at the
price of a potential lack of accuracy.

Note that the inspection step implies that the
procedure adapts itself at the beginning of the RSM
optimization process. Clearly, there is a lot of room for
variations based on the decision at which design points
ε0 is determined and whether it should be determined
once, occasionally, or frequently during the RSM
algorithm. The inspection step itself is divided into two
parts. In steps (2) to (6) in Fig. 3 the Gauss-Seidel
solver is forced to continue iterating until the relative
difference between consecutive response values is

(1) π(0) := π0 ; y(0) := f(π0) ; i := 0
(2) REPEAT
(3) i :=i + 1
(4) start Gauss-Seidel solver with π0 := π(i-1) until maximum

residual d2 is below ε = 10-i
(5) compute reward measures and evaluate response function

y(i) := f(w,π(i))
(6) UNTIL |(y(i-1) – y(i)) / y(i-1)| < 10-2
(7) k := i
(8) REPEAT
(9) i :=i + 1
(10) start Gauss-Seidel solver π0 := π(i-1) until maximum residual

d2 is below ε = 10-(k + (i-k)/10)
(11) compute reward measures and evaluate response function

y(i) := f(w,π(i))
(12) UNTIL |(y(i-1) – y(i)) / y(i-1)| < 10-4
(13) RETURN ε0 := ε

Fig. 3. Inspection step of RSM strategy 2
below a threshold 10-2 where response values y(i),
i=1,2,…, are computed from intermediate distributions
π(i) only if d2 < 10-i, i.e., if the accuracy of the
intermediate distribution is increased by one order of
magnitude. In the second part of the inspection step
(see steps (8) to (12) in Fig. 3), the response function is
evaluated more frequently in order to determine the
value of ε0 more precisely such that the relative
difference between the responses is below 10-4. The
reason for not applying the inspection step for every
evaluation of the stochastic model is simply to avoid
the effort of a multiple computation of the response
function during the iterations of the equation solver in
the main step of the RSM optimization process.

Recall that RSM estimates a direction of steepest
ascent/descent with the help of a first-order model that
only approximates the real response surface. Hence,
some lack of precision from the estimation would add
only to the imprecision of the gradient estimation and
need not be critical. A determination of threshold
values for that trade-off is clearly model-dependent.
Nevertheless, the following assumption seems natural.
Since RSM initially considers rather large regions and
it is likely to be far from the optimal solution, a very
moderate precision is supposed to be sufficient to
identify a promising direction. In a later phase and
closer to an optimum, a higher accuracy is necessary to
identify an optimum or to get close to it. That results in
the third heuristic strategy that we propose.

Strategy 3: Start with an initial precision of ε0 and increase
the accuracy if RSM is forced to reduce the local region of a
first-order model significantly.

In strategy 3, the initial precision ε0 results from the
inspection step of strategy 2. For our implementation,
we considered a reduction of the half-width ω of the
local region below 0.06 (in coded variables) to be
significant.

4. Optimizing Class-Based Queueing

In a class-based queueing system (CBQ), the
requirement for link-sharing is to share bandwidth on a
network link between multiple traffic classes, where
each traffic class wants to receive a guaranteed share
of the link bandwidth during congestion, but where
bandwidth that is not being used by one traffic class
should be available to other traffic classes sharing the
link. In CBQ, a conceptual distinction is made between
a general scheduler and a link-sharing scheduler [7].
The general scheduler is usually a weighted Round
Robin scheduler (WRR) that is controlled by the link-
sharing scheduler (see Fig. 4). Incoming traffic is
classified into the appropriate queue according to a set
of filtering rules. The general scheduler selects packets
from the queues in a way that guarantees for each
traffic class at least a predefined bandwidth portion of
the overall output link bandwidth. A traffic estimator,
located at the output link, measures the departure time
between successive packets of each class and
characterizes each class as over-limit, under-limit, or
at-limit. A class is called over-limit if it has recently
used more than its guaranteed bandwidth, under-limit
if it has used less than its guaranteed bandwidth, and
at-limit otherwise. If a queue of a certain traffic class is
empty, the link-sharing scheduler distributes the excess
bandwidth among the remaining classes. Furthermore,
if congestion occurs, the link-sharing scheduler makes
over-limit classes inactive so that the general scheduler
does not serve them until their suspension period ends.

For modeling the class-based queueing system we
used the generalized stochastic Petri nets (GSPN)
notation [1]. According to [3], the model is arranged in
a hierarchical structure such that efficient solution
methods based on Kronecker representation can be
applied. In particular, we consider three traffic classes,
each of which comprises one sub-model. Furthermore,
the arrival process of data packets is contained in a
fourth sub-model. For traffic modeling we considered
a 5-state phase-type distribution, which was fitted to
the LBL-TCP-3 trace from in the Internet Traffic
Archive [8]. For distribution fitting, we used the tool
G-FIT [5]. The GSPN model, as well as a detailed
description of its behavior, is available for download
on the Web page of the APNN toolbox [2].

� � � � � � � � � � � � 	
 �
 � � �

� � � � 	

� � � � � � 	 �

� � � �
 � � � �

� �
 � �
 � � � �

� 	 � 	 � � � � � � � 	 � � � 	 �

� � � � � �

	 �
 � �
 � �

� � � � � � � � � �

� � � 	 � � � 	 �

Fig. 4. Class-based queueing scheduler

In the following optimization problem, the weights
of WRR should be configured such that the sum of the
average delays experienced by packets of each traffic
class is minimized under a given delay constraint for
each class. We assume that the QoS requirements of
traffic class i are such that the average delay for each
class should be less than a predefined class-specific
bound *

iD , i = 1,2,3.
From the stationary solution of the CBQ model,

performance measures of interest can be computed.
We consider performance measures that depend on the
setting of WRR weights w = (w1, w2, w3). Denote the
mean queue length of class i by MQLi(w) and the
throughput of class i by THUi(w). Applying Little’s
law, the delay of class i is given by Di(w) = MQLi(w) /
THUi(w). With that definition, the formal optimization
problem is:

3
ii 1D () min

=
→∑ w with constraints

*
i iD () D≤w , i = 1,2,3, and 3

ii 1 w 1
=

=∑ .
(3)

The constrained optimization problem (3) can be
transformed into the unconstrained form with the help
of a penalty function

{ }
3 3

*
i i i

i 1 i 1
f () D () max 0,D () D

= =
= + β −∑ ∑w w w ,

(4)

where f(w) is the response function that shall be
minimized and β is a penalty coefficient. Furthermore,
we assume that the weights are normalized before we
evaluate f(w), so we can omit the second constraint in
(3). Note that the penalty coefficient β is a fixed value,
so the response function (4) remains the same during
the optimization process. This is different in [3] where
β is changed during the optimization procedure.

5. Experimental Results

In this section, we evaluate the CBQ model for a

particular configuration and workload with the goal of
optimizing the setting of WRR weights w. The
unconstrained objective function Eq. (4) is analyzed
with penalty coefficient β = 1. In the CBQ model, we
assume that the packet classifier assigns the same share
of arriving packets to each queue and let 20 packets
arrive per time unit in each queue on average. The
overall bandwidth of the network link is set to a
transfer rate of 100 packets per time unit. Let D* =
(0.025, 0.25, 1) be a vector with predefined delay
constraints. For a consistency check, we calculate the
minimal affordable delay for each class, e.g., for class
1, the minimal affordable delay is 0.01216, which is
achieved for weights w = (1, 0, 0). By analogous
calculations for classes 2 and 3, we check that the

model is able to comply with D* at least for individual
classes.

For any fixed w, we obtain a CTMC with 1,474,704
states and 10,151,988 non-zero entries. Different
settings of w do not change the dimension or non-zero
structure of Q; only individual non-zero entries depend
on w. All rates are in a range of [3.64, 104]. The large
differences in rates result from control tokens that
circulate rather quickly relative to the service delays at
a queue. We focus on iterations of the numerical solver
as a hardware-independent measure. It took about 10
minutes to compute 1000 iterations not taking into
account the transformation of the model into a CTMC
and the evaluation of the results.

The numerical solution shows a remarkable
behavior with respect to convergence of residuals,
rewards, and response function f. Figs. 5 and 6 show a
sequence of values for residuals, throughputs, queue
lengths, and response function over the number of
iterations performed by the numerical solver.
Individual measures are taken every 100 iteration steps
of an SOR solver, with a relaxation of 0.95 that starts
with a uniform distribution for π0. In this experiment,
we consider fixed weights w = (0.715, 0.207, 0.078).
We observe a very slow rate of convergence for
residuals (maximum and sum); after 6000 steps, the
maximum residual is d2 < 10-7. In practice, solutions of
d2 < 10-8 to d2 < 10-12 would be considered reasonably
accurate. The values of throughputs and queue lengths

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000
 0

 1

 2

 3

 4

 5

 6

T
h
ro

u
g
h
p
u
t

Q
u
eu

el
en

g
th

Iterations

Throughput 1
Throughput 2
Throughput 3

Queuelength 1
Queuelength 2
Queuelength 3

Fig. 5. Convergence behavior of SOR solver:
Throughput and queue length (scenario 1)

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 1000 2000 3000 4000 5000 6000
 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

R
es

id
u
al

s

R
es

p
o
n
se

Iterations

Maximum of Residuals
Sum of Residuals

Response

Fig. 6. Convergence behavior of SOR solver:
Residuals and response (scenario 1)

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 1000 2000 3000 4000 5000 6000
 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

R
es

id
u
al

s

R
es

p
o
n
se

Iterations

Maximum of Residuals
Sum of Residuals

Response

Fig. 7. Convergence behavior of SOR solver:
Residuals and response (scenario 2)

 0.3
 0.4

 0.5
 0.6

 0.7
Weight 1 0.2

 0.3
 0.4

 0.5
 0.6

Weight 2

 0.106
 0.108
 0.11

 0.112
 0.114
 0.116
 0.118
 0.12

Response

Fig. 8. Response surface for the class-based
queueing system
vary significantly within the first 1500 steps and
stabilize for more iteration steps, so convergence is
quicker than for residuals. The same holds true for the
curve of response function f in Fig. 6. We exercised
different values for relaxation and observed an
increased convergence rate for increasing values of the
relaxation factor up to 1.15; however, at 1.2, we
observed divergence. Hence, for the experiments
described in this section, we decided on a defensive
selection of the relaxation factor as 0.95. Since the
CTMC varies according to values of w, curves of the
kind shown in Figs. 5 and 6 are expected to vary as
well. Fig. 7 gives analogous curves for a CTMC with
w = (0.33, 0.33, 0.34). Convergence for residuals is
better; we achieve d2 < 10-5 in 2000 iterations, and d2 <
10-8 in 3000 iterations. Both examples confirm our
assumption that an approximate evaluation of f based
on numerical solutions of low accuracy can give
reasonably good approximations in significantly less
computation time.

We computed a grid over the response surface with
precisions d2 < 10-4 and d2 < 10-8 and found that the
numerical differences between the response values are
insignificant, i.e., the maximum difference was below
0.004. The entire response surface for which we do not
provide a diagram for lack of space, has very steep
areas near the edges and a very flat area around the
optimum; the best configuration we could identify is at
w = (0.5774, 0.2142, 0.2084). Fig. 8 presents a region
of the response surface that contains the optimum.

0.20

0.23

0.26

0.29

0.32

0.35

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Weight of queue 1

W
ei

gh
t o

f q
ue

ue
 2

initial setting w = (0.50, 0.25, 0.25)
initial setting w = (0.33, 0.33, 0.34)

Fig. 9. Courses of RSM runs with ε = 10-2

0.20

0.23

0.26

0.29

0.32

0.35

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Weight of queue 1

W
ei

gh
t o

f q
ue

ue
 2

initial setting w = (0.50, 0.25, 0.25)
initial setting w = (0.33, 0.33, 0.34)

Fig. 10. Courses of RSM runs with ε = 10-3
Note that w3 = 1–w1–w2 and w3 is thus implicitly

represented in the figure as well. Clearly, the
computation of a grid over the entire surface is only
used for illustration and validation purposes. The RSM
algorithm only evaluates relatively few spots on the
response surface.

Two of the input parameters of the RSM algorithm
are the precision of the numerical solution, for
instance, measured by the maximum residual d2, and
the initial values of w, whose impact we evaluate for
the given model. We conduct experiments for d2 < ε
with ε = 10-i, i=2,…,6, and two initial settings for w,
namely w1 = (0.33, 0.33, 0.34) and w2 = (0.5, 0.25,
0.25). Fig. 9 shows center points on a course of the
RSM algorithm for w1, w2, and d2 < 10-2. A filled black
symbol indicates the initial configuration, a filled gray
symbol the final result, and an asterisk the optimal
solution from the grid evaluation of Fig. 8. For RSM
we considered stopping rule (ii) introduced in Section
2.2, i.e., RSM stops if the half-width of the local
region becomes smaller than ωstop = 0.01. In Fig. 9,
both computations get in the region of the optimum;
however, the quality of the results suffers from lack of
precision. Fig. 10 gives results for a precision of d2 <
10-3, where RSM gets close to the optimum. A similar
behavior is observed for a better precision, i.e., ε = 10-4
and ε = 10-6. We use the results as an indication that
the RSM algorithm is robust with respect to the
selection of an initial configuration. In the following,
we study the three different strategies for RSM
introduced in Section 3.

In Fig. 11, we perform RSM with different levels of
precision and consider the quality of the results whose
values are given in Tab. 1. RSM(i) denotes an RSM

run with precision d2 < 10-i. The column “Weights”
gives the final value of w of the RSM algorithm, and
the column “Response” gives the exact value f(w), i.e.,
computed from an additional numerical solution with
d2 < 10-10. The results show that RSM with a precision
higher than 10-4 does not yield better results. It is not
worthwhile. A precision of 10-2 gives results whose
response function differs from the response for
precision 10-4 by less than 1%. We focus on f(w) rather
than the Euclidian distance of w from the optimal
solution; the best value of f that we obtained is
f(0.5774, 0.2142, 0.2084) = 0.106959. Recall that the
SOR precision that is required in order to compute the
response function with sufficient accuracy can also be
determined by the algorithm presented in Fig. 3 of
Section 3. In fact, running that algorithm for the five
design points of the experimental design that RSM
uses for the first local region yields a required
precision of ε0 = 10-4.1 when the computed precisions
for the design points are averaged. Thus, strategy 2 can
safely be applied in this case. The following
experimental results indicate that for this example,
RSM succeeds even for a lower precision. However,
we believe that for strategy 2 we chose constants that
will perform reasonably well for a range of models.
We do not want to calibrate the algorithm in Fig. 3 too
much to our specific example.

To reveal the impact of strategy 1, we experimented
with two cases: a) a uniform initial distribution and b)
an initial distribution according to strategy 1, i.e., the
initial distribution is determined from a previously
computed distribution π of a configuration that is close
to w. For strategy 3, note that evaluation of all points
of a single first- or second-order model should take
place with the same precision, since Figs. 6 and 7
indicate that results obtained at different levels of

Tab. 1. Settings of the weights found by RSM

Weights Response
RSM(2) (0.600, 0.235, 0.165) 0.107293
RSM(3) (0.559, 0.234, 0.207) 0.107010
RSM(4) (0.577, 0.214, 0.209) 0.106959
RSM(5) (0.577, 0.213, 0.210) 0.106959

0.21

0.22

0.23

0.24

0.25

0.26

0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61
Weight of queue 1

W
ei

gh
t o

f q
ue

ue
 2

RSM(2)
RSM(3)
RSM(4)
RSM(6)

Fig. 11. Courses of RSM runs with same
starting point but different SOR precisions

Tab. 2. RSM runs with different strategies
π0 ε0 ε1 #Iterations Response

RSM(2) uniform 10-2 39100 0.107293
RSM(3) uniform 10-3 44000 0.107010
RSM(4) uniform 10-4 87600 0.106959
RSM(2,3) previous 10-2 10-3 14750 0.113713
RSM(2,4) previous 10-2 10-4 31500 0.106993
RSM(3,4) previous 10-3 10-4 32900 0.106994

0.21

0.22

0.23

0.24

0.25

0.26

0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61
Weight of queue 1

W
ei

gh
t o

f q
ue

ue
 2

RSM(2) RSM(3) RSM(4)
RSM(2,3) RSM(3,4) RSM(2,4)

Fig. 12. Effect of different strategies

precision differ significantly in the steep initial part of
the curves of response function f.

In Fig. 12, we consider the effect of using strategies
1 and 3 for the RSM algorithm in combination.
RSM(i,j) denotes an RSM run that starts with precision
10-i and switches over to precision 10-j if the half-width
ω of the local region that RSM considers decreases to
below 0.06 (see strategy 3 in Section 3). As in the
previous figures, a filled gray symbol denotes a final
result. Tab. 2 gives detailed information on the applied
variant of RSM, i.e., it shows whether the selected
initial distribution was uniform or a previously
computed one (column π0), it shows the selected
precision (column ε0), and it shows the observed total
number of iterations of the numerical solver (column
#Iterations) that are summed over all evaluations of
design points. If there is an entry in column ε1, it
indicates that the algorithm initially starts with the
precision given in column ε0 and then switches to a
numerical solution with higher precision ε1. Note that
differences in Tab. 2 result not only from different
precisions but also from the fact that RSM performs a
different total number of steps and visits different
design points. RSM(2,4) and RSM(3,4) yield results of
similar quality, but RSM(2,4) saves about 1400
iterations. RSM(2,3) saves a lot on iterations because
of two effects. First, low precision reduces the number
of iterations per design point, but more importantly,
the RSM algorithm terminates after a few steps being
misled by the imprecise values of the numerical
solution. For low precisions, we do not achieve a better
result with RSM(i,j) than by using RSM with no
strategy. However, that means only that a change for
the maximum residuals from 10-2 to 10-3 is not enough
to find an appropriate maximum. If we compare results
of RSM(3,4) and RSM(2,4), we gain a significantly

better result than for the fixed precision variants
RSM(2) and RSM(3) and only a slightly worse result
than RSM(4). Considering the computational effort,
the savings achieved by strategies 1 and 3 are
significant; for instance, RSM(2,4) reduces the number
of necessary iterations from 87600 to 31500. Note that
we get even significantly better results with RSM(2,4)
or RSM(3,4) that need about a fourth less iterations
than RSM(3).

In [3], a more simple variant of the CBQ model
with a Poisson arrival stream is considered with a
similar objective function. In [3], the minimal sum of
delays for a comparable configuration of the model is
found at w = (0.7157, 0.02768, 0.09141) with delays D
= (0.02367, 0.03373, 0.05860). In our CBQ model,
that configuration has a response of 0.11601. Running
the RSM algorithm with a penalty coefficient β = 1,
the best solution found is w = (0.57737, 0.21425,
0.20838) with corresponding delays D = (0.02614,
0.03958, 0.0401) and a response of 0.10696. In this
solution, the delay constraint for the first traffic class is
slightly violated. Increasing the impact of the penalty
coefficient to β = 5, the best solution found is
w = (0.64438, 0.18170, 0.17392) with corresponding
delays D = (0.02497, 0.04073, 0.04176). With β = 5,
the constraints are fulfilled, and the sum of delays is
lower than in the configuration found in [3]. Thus, we
can conclude that the presented RSM algorithm for
optimizing numerical models is a quite versatile
approach that outperforms a previous approach in
terms of quality of the solution.

6. Conclusions

We presented an approach for the optimization of

stochastic models that is based on the response surface
methodology. In contrast to previous work, our
approach works in a fully automated way and is
tailored to the optimization of computationally
expensive numerical models. During the optimization
process, we iteratively use first- and second-order
linear regression metamodels combined with a
gradient-based method to find a direction of
improvement.

The numerical analysis is based on a Gauss-Seidel
solver with relaxation that uses a hierarchical
Kronecker representation for a given continuous time
Markov chain. Since RSM implies a repeated solution
of related CTMCs, we propose three strategies to
reduce the amount of computation time per evaluation
of the response function. The overall approach is
evaluated with the help of an application example of a
class-based queueing system. We determined a

configuration of the queueing weights such that the
sum of delays is minimized under given delay
constraints.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Francheschinis, Modelling with Generalized
Stochastic Petri Nets, John Wiley & Sons, 1995.
[2] F. Bause, P. Buchholz, and P. Kemper, A Toolbox for
Functional and Quantitative Analysis of DEDS, Proc.
Tools´98, LNCS 1469, 356-359, Springer, 1998.
<www4.cs.uni-dortmund.de/APNN-TOOLBOX/>
[3] P. Buchholz and A. Panchenko, Numerical Analysis and
Optimisation of Class Based Queueing, Proc. 16th Europ.
Simulation Multiconference, 543-547, SCS Publishing, 2002.
[4] P. Buchholz and P. Kemper, Kronecker Based Matrix
Representations for Large Markov Models, Validation of
Stochastic Systems, LNCS 2925, 256-295, Springer, 2004.
[5] P. Buchholz, M. Telek, and A. Thümmler, A Novel
Approach for Fitting Probability Distributions to Real Trace
Data with the EM Algorithm, Proc. Int. Conf. of Dependable
Systems and Networks (DSN), Yokohama, Japan, 2005.
[6] D.D. Deavours, et al., The Möbius Framework and Its
Implementation, IEEE TSE 28, 956-969, 2002.
[7] S. Floyd and V. Jacobson, Link-sharing and Resource
Management Models for Packet Networks, IEEE/ACM
Transactions on Networking 3, 365-386, 1995.
[8] Int. Traffic Archive <ita.ee.lbl.gov/index.html>
[9] V. Jacobson, K. Nichols, and L. Zhang, A Two-bit
Differentiated Service Architecture for the Internet, Request
for Comments 2638, Internet Engineering Task Force, 1999.
[10] S. Kirkpatrick, C. D. Gelatt, and M.P. Vecchi,
Optimization by Simulated Annealing, Science 220, 1983.
[11] J.P.C. Kleijnen and R.G. Sargent, A Methodology for
Fitting and Validating Metamodels in Simulation, European
Journal of Operational Research 120, 14-29, 2000.
[12] A.M. Law and W.D. Kelton, Simulation Modeling and
Analysis, 3rd Edition, McGraw-Hill, 2000.
[13] A. Michalas, et al., Proportional Delay Differentiation
Provision by Bandwidth Adaptation of Class-based Queue
Scheduling, Int. J of Communication Systems 17, 2004.
[14] A. Miner and D. Parker, Symbolic Representations and
Analysis of Large Probabilistic Systems, Validation of
Stochastic Systems, LNCS 2925, 296-338, Springer, 2004.
[15] D.C. Montgomery and R.H. Myers, Response Surface
Methodology: Process and Product Optimization Using
Designed Experiments, 2nd Edition, John Wiley, 2002.
[16] H.G. Neddermeijer, et al, A Framework for Response
Surface Methodology for Simulation Optimization, Proc.
Winter Simulation Conference, USA, 129-136, 2000.
[17] H.P. Schwefel, Evolution and Optimum Seeking, John
Wiley, 1995.
[18] W.J. Stewart, Introduction to the Numerical Solution of
Markov Chains, Princeton University Press, 1994.

